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Abstract We consider a one-dimensional Kronig-Penney model with randomly placed dimer 
impurities. We show that this model has infinitely many resonances (zeroes of the reflection 
coefficient) giving rise to extended states. instead ofthe one allowed resonance arising in random 
tight-binding models with paired correlated on-site energies. We present exact transfer-matrix 
numeriwl calculations supporting, both realizationwise and on average. the conclusion th& the 
model has B very luge number of extended states, which M be relevant in several physical 
contexts. 

Since the one-dimensional Kronig-Penney model was introduced [I], it has been applied 
to many fields of physics, such as band structure and electron dynamics in ordered 
solids, impurity levels, localization phenomena in disordered solids and liquids [2], 
microelectronic devices [3,4], properties of layered superconductors [SI, electronic transport 
in spontaneously dimerized solids (Peierls transition) [6], and quark tunnelling in one- 
dimensional nuclear models [7]. A most remarkable feature of wavefunctions in disordered 
Kronig-Penney models is their strong localization in well defined regions of the lattice [2]. 
Similar results arise in one-dimensional tight-binding Hamiltonians with random interactions 
(Anderson localization [8]). Localization of all eigenstates by disorder in one-dimensional 
systems has often been viewed as an exact statement [9]. 

Three years ago, Dunlap, Wu and Phillips [10-12] (see [13] for a review) studied a tight- 
binding model (the so-called random-dimer model, RDM) in which the on-site energy takes 
on one of two possible values, one of which was assigned at random to pairs of lattice sites. 
They showed that for a certain energy the reflection coefficient of a single defect vanished, 
and that this resonance was preserved when a finite concentration of defects were randomly 
placed in the chain. This gave rise to a set of delocalized states proportional to the square 
root of the number of sites. As a consequence, in such a system electronic transport can 
take place almost ballistically, which is the opposite to the above-mentioned general belief. 
Similar results have been also shown to hold true for dilute binary alloys by Flores [14]. The 
conclusion of Dunlap et al that a large number of states were not localized has been further 
confirmed by perturbative calculations by Bovier [15], aIthough very recently a contrary 
viewpoint has been held by Gangopadhyay and Sen [16]. The RDM has been generalized 
recently [17] to include more complex arrangements of defects, without suppressing the 
existence of many extended states. 
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In this paper, we concern ourselves with a more physical continuous model, which we 
call the continuous random-dimer model (henceafter, CRDM). It has to be noticed that this 
system is not the continuum version of the RDM of Dunlap et al. as studied in [17]. We 
build our model in the following way: we start from a usual Kronig-Penney model, given 
by a potential of the form 

N 
V ( x )  = 1 A, 6(x  - X " )  . (1) 

n=1 

We choose A, > 0 and we take the positions of the delta functions to be regularly spaced, 
i.e. x, = n.  We allow only two values for ha, A and A', with the additional constraint that 
A' appears only in pairs of neighbouring sites. In this fashion, we have defined a continuous 
version of the tight-binding random-dimer model. The corresponding Schradinger equation 
is then 

We believe that our model is more redistic than the RDM since no tight-binding approach 
is involved, and since the &function potential is a good candidate to model more structured 
interactions [18]. We will see in the following that there exists a number of energies for 
which the reflection coefficient at a single dimer vanishes. Because interference effects are 
more complex in this continuous model than in tight-binding approaches, it is a non-trivial 
task to elucidate whether these resonances will survive when several dimers are located at 
random along the lattice. 

We now use the techniques of dynamical systems theory, as first used by Bellissard et 
al [19] (see also [ZO]) to consmct the Poincark map associated with (2). It is important to 
stress that, by doing this reduction to an equivalent tight-binding set of equations, we are not 
losing any information at all, and the calculations remain exact. The resulting equations are 

where Y(x = n). Notice that the energy enters in the equations in a rather compli- 
cated fashion. To proceed, we have to take into account in the first place the condition for 
an electron to be able to move in the perfect (A' = A) lattice, namely 

this constraint gives the allowed en~ecgy values once h is fixed. On the other hand, we 
follow Dunlap et a1 and study the problem of a singlspair defect on an otherwise perfect 
chain. In our case, a straightforward application of the results in [IO] leads to the following 
condition for the vanishing of the reflection coefficient: . 

A' s i n J F  
C O S K E i -  'z - -0. 

It is a matter of simple algebra to transform the two equations (4) and (5) into these other, 
more useful equations: 
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Restricting ourselves to the range A < 2A', equation (6b) is trivially verified, and therefore 
it poses no restrictions on the allowed energy values, aside from the fact that they must 
be positive. Hence, we are left only with (6a) to select the energy values for which the 
reflection coefficient of a single defect becomes exactly zero. As tan(v%) is a rr-periodic 
function and takes all values in [-CO, +CO], for any A' we choose we will find energy values 
solving for v% in (6a) in every interval [(2n - 1) rr/2, (2n + 1) rr/2], n = 1,2, . . . , i.e. we 
will have an infrnize countable sef of energies for which the single defect reflection coefficient 
vanishes. This is to be compared with the result of Dunlap et ai, who found a unique energy 
in the allowed band (recall that their model is a single-band one) for which the same perfect 
transmission took place in the RDM. We discuss this point further in our conclusions. 

We now proceed to the problem of the disordered lattice, containing a certain number 
of pair defects. To this end, we go back to (2)  and introduce the reflection and transmission 
amplitudes through the relationships, 

if x i 1  eiJi?.z + R~ e - i f ix  

TN e i f i x  if x > N  
q ( x )  = (7) 

where TN and RN are the transmission and the reflection amplitudes of a system with N 
scatterers, respectively. It is not difficult to compute recursively both amplitudes using well 
known transfer-matrix procedures (see, e.g., 1211). In particular, the transmission amplitude 
can be written as 

A N =  a"+- AN-l - (E) AN-2 ( O N - I  

where AN ljT$, and 

Finally, equation (8) must be supplemented by the initial condition Ao = 1, AI = oc1 to 
completely determine the amplitudes. 

Once we have computed ~ the transmission amplitude, some physically relevant 
magnitudes can 'be readily obtained from it. Thus, the transmission coefficient is given 
by 

TN = I T N ?  (10) 

whereas the resistivity, according to the Lmdauer formula [22], is simply 
1 

p N = - - l .  
ITN 1' 

Aside from these two quantities, there are others that can also be obtained from the 
transmission amplitude, although somewhat less naturally. Indeed, the Lyapunov coefficient 
(which is nothing but the inverse of the localization length) depends on this amplitude 
through the expression [21] 

and it can also be shown [21] that the integrated density of states (DOS)  is related to TN, 
by 



3128 

From this last expression, the density of states (DOS) can be obtained by simple derivation 
with respect to the energy. 

The results we have obtained so far provide an exact, although non-closed analytical 
description of any one-dimensional, disordered KP model. With them, we can compute 
the magnitudes we mentioned above for any given model and, in particular, for the CRDM. 
All expressions are very simple and suitable for an efficient numerical treatment of any 
specific case. We will now evaluate them for several of these cases to check whether there 
is any relevant feature of the transmission coefficient and related quantities that may be the 
fingerprint of extended states. We have to notice that there are several parameters that can 
be varied in the CRDM: the strengths of the two kinds of scatterers, A and A', the defect 
concentration, and the length of the system, N. Without loss of generality, we fix A = 1 
from now on and consider A' 2 1 so that (6b) holds. 
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Figure 1. Transmission coefficient versus energy for a Figure 2. Lyapunov exponent versus energy for a 
system with A' = 1.5, 5000 scatterers, and a probability system with A' = l.5.5WO scatterers, and a probability 
of having a dimer of 0.5. The w o w  marks the predicted of having a dimer of 0.5. The dashed line marks the 
resonance. inverse of the system length: Energies with a lower 

exponent will have a locdization length larger than 
the system length. The arrow marks the predicted 
resonance. 

We first describe our results realizationwise, because we believe that these are the most 
physically relevant; we deal briefly with the average properties of the model below. In 
figure 1, we show the transmission coefficient for a system with A' = 1.5, 5000 scatterers, 
and a probability of having a dimer q = 0.5. Each site is assigned a value A' with probability 
q and the next one is immediately set to A' too; otherwise, with probability 1 - q the site is 
given the value A, and the next one is again chosen at random in the same way. The value 
q does not coincide with the concentration of A's, however, because if a site happens to be 
part of a dimer, the next one is already part of the dimer. To be specific, the ratio between 
the number of sites with strength A' and N is given by 2 q / ( l  + q ) .  In this plot, it is clearly 
appreciated that the peak in the transmission coefficient is very close to the predicted value 
for the first resonance ( E  = 3.7626 for this parameter set). Moreover, neighbouring states 
have a transmission coefficient close too unity, which decreases as we move away from the 
resonance. In figure 2, the Lyapunov exponent is plotted versus the energy for the same 
system; again, we appreciate that there is a deep minimum around the resonance value, 
which implies a very large localization length, much larger than the system size. The other 
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magnitude we study, the resistivity; confirms the existence of an energy interval for which a 
typical realization of our model shows transport properties similar to those of perfect lattices. 

The IDOS, which is plotted in figure 3, deserves some separate comments. Due to the 
presence of the multivalued log function in the defining relationship (13). this magnitude 
is very sensitive to the resolution in energies: if there is a jump in the arctan between 
two points for which the !DOS is computed, this jump will be missed and the IDOS will 
subsequently be underestimated. However, we checked several cases computing the IDOS 
with tiny energy steps (5 x which is very time consuming; with this accuracy, we 
recover the agreement betweem systems of different sizes (notice that the magnitude we 
discuss is in fact the IDOS per volume) as regards the total number of states and the IDOS 
structure. As to this last feature, we want to stress that the IDOS is well behaved (smooth) 
over all the studied range of energies. This implies that the same argument used by Dunlap 
eta1 [lo] to show that f i  states were extended holds in this case too, because the reasoning 
depends crucially on the DOS structure (see [15]). 

Figure 3. Integrated density of states for systems with A' = 1.5 
and a probability of having a dimer of 0.5. of sizes 1000, 5000, and 

0.75 2.25 3.15 5.25~ 6.7too 10000 scatterers from top to bottom. The anow marks the predicted 

10 , ..' 
, ,/' ,__. 

E resonance. 

It is most important to report on how the above picture is modified when the system 
parameters are changed. First of all, the main characteristic of our model, i.e. that it has 
an infinite number of resonances, is confirmed by our calculations; besides, the higher the 
resonant energy (meaning the higher n in [(h - 1) n/2, (21 + 1) a/21, the wider the peak 
in the transmission coefficient and the other transport magnitudes. The peak width also 
increases when decreasing A' towards A = 1, and decreases when increasing A'. This is 
to be expected, because when A' = A we recover the perfect lattice. With respect to the 
other parameters, the number of scatterers and the concentration of dimers, both cause 
a narrowing of the set of extended states when they are increased in the range studied 
(100 < N d 50000, 0.1- < q < OS),,although it is important to stress that this set always 
has non-zero width. Interestingly, when the number of scatterers increases, the nos steepens 
(i.e. the DOS exhibits a sensitive increment) around the resonant energy; consequently, the 
number of extended states may be constant in spite of  the^ decreasing of the width of the 
transmission peak. 

We now comment on the averaged results. When computing averages, they were taken 
over a number of realizations varying from 100 to loo00 to check the convergence of the 
computed mean values. The convergence was always satisfactory, with discrepancies of less 
than 1% between all the ensembles. Once more, however, to get accurate results for the IDOS 
is quite time consuming due to the necessary resolution in energies. The averaged results 
for the transmission coefficient, the Lyapunov exponent, the resistivity, and the density' of 
states are basically the same as those for a typical realization commented on above. This is 
a crucial point because it supports our claim that those are the main features of our model 
irrespective of the particular realization of the disorder. 
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In summary, we have studied a Kronig-Penney model with two kinds of sites, one of 
them constrained to appear only pairwise. We find an infinite number of energies for which 
the reflection coefficient of a single defect vanishes. We have shown, through numerical 
evaluation of exact expressions, that these resonances give rise to a very large number of 
extended states. These extended states are characterized by a transmission coefficient close 
to unity and a localization length much larger than the system length. The basis for the 
existence of extended states, relevant to affecting the transport properties and the smooth 
character of the DOS around the resonance [IO, 151, holds, supporting our conclusions. The 
increasing of the DOS around the resonance for large systems helps keep relevant the number 
of extended states. As a conclusion, we want to stress that the fact that we have more than 
one resonance is very important. Notice that the resonant energy values do not depend at 
all on the impurity concentration. Therefore, by modifying this concentration, we could 
shift tbe Fermi level of the system to match one of the resonances, either the one above 
or the one below its previous position. In this case, when the Fermi level reaches the set 
of resonant states, a large electrical conductance peak should appear. This effect could be 
relevant in the physical contexts mentioned at the beginning of this paper, most interestingly 
in the case of layered superconductors [51 or in disordered superlattices [4]. This possibility 
may open new perspectives in the design of electronic devices as well as in the design of 
materials with special properties. Further theoretical work towards a more comprehensive 
understanding of these questions is needed in order to pursue experimental evidence of this 
suppression of localization. 
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